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In this paper we investigate the behavior of small networks of van der Pol-Duffing chaotic oscillators that
are connected through local, although not weak, coupling through a recently introduced [Phys. Rev. E 52,
R2145 (1995)] extension of the Pecora-Carroll synchronization method. The method allows one to design a
variety of settings with different ways of connecting a number of low-dimensional circuits. It is shown that a
variety of different behaviors can be obtained, depending, among other factors, on the symmetry of the
connections and on whether the oscillators are identical or different. One may cite the emergence of coherent
behavior (a single cluster), either chaotic or periodic, as stemming just from interaction among the different
chaotic units, although several coexisting clusters are found for other settings.

PACS number(s): 05.45.+b

L. INTRODUCTION

At first sight a chaotic system should be one defying any
attempt of synchronization, due to its strong dependence on
the initial conditions that would amplify any small distur-
bance. However, it has been suggested [1], and later proved
[2], that this is not the case, and that chaotic systems may
synchronize in some circumstances. One of the possibilities
is one-way coupling, in which one has a drive-response
couple, such that a signal coming from the drive makes the
response synchronize without influencing the drive. This has
been shown in a seminal contribution by Pecora and Carroll
(PC) [2], including the application to electric circuits. The
PC method is specially suited for the case of analog circuits,
as one-way connections can be easily implemented through
operational amplifiers. A problem is that drive and response
must have a part in common, implying from this fact that the
response has, in practice, a reduced dimensionality compared
to the drive.

An interesting extension of these ideas is to the case of a
cascade [3], in which the response of some drive system acts,
in turn, as the drive of a second response system. At variance
with what happens with a single connection, in one such
cascade the input signal is regenerated by the second re-
sponse circuit. By taking advantage of the degree of stochas-
ticity that a chaotic signal exhibits to a casual observer, it has
been suggested that these cascades could act as chaotic fil-
ters, potentially useful in the field of secure communications
[4,5]. The idea is to mask the information to be transmitted
with the chaotic signal, the main advantage being that one
could bury the information to be transmitted in the chaotic
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signal by 30—40 dB, something that would not be possible
with classical masking techniques based on the use of purely
stochastic masks. See, however, Ref. [6] for recent evidence
that the kind of masking to be used needs to be more sophis-
ticated than the simple technique just sketched.

If a cascade is able to regenerate a given input signal, then
a network formed by many low-dimensional chaotic systems
could be useful as an information processing system. In this
sense, this would be a generalization of the so-called cellular
neural networks [7], devices able to perform useful compu-
tations based just on bistable circuits. Chaotic networks
could operate by performing transitions among different
kinds of coherent states. In addition, physiologists have
found such coherent waves as evoked responses in the brains
of some mammals [8], and have speculated [9] on their role
in perception and other mental capabilities.

The aim of the present contribution is to suggest a way of
setting up complex networks composed of many low-
dimensional chaotic circuits. The PC method, in the form
introduced in the original contribution [2], presents some
limitations to the achievement of this goal, due to the fact
that the drive and response systems share the driving signal.
Although other versions of the method that overcome these
limitations have already appeared (see, e.g., Ref. [10]), here
we shall resort to an extension [11] of the PC method in
which the input signal enters at a precise location of the
dynamical equations of the response system. The result is
that one is able to regenerate the input signal within a single
connection, while the possibility of using the same connec-
tion twice without alternating with the other one is allowed.
The result is that a given system may receive input from a
number of systems, and that a number of different networks
with different connectivities can be set up, thus resembling
the situation found in biological neural networks.

All the results presented in the present contribution have
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FIG. 1. Synchronized behavior obtained by connecting two
identical van der Pol-Duffing circuits (1) in the chaotic regime
using the connection defined by Eq. (2). The parameters for the
circuit are v=100, «=0.35, and 8=450.

been obtained for the case of four van der Pol-Duffing sys-
tems [12] in the chaotic state. Although this is a fairly small
number, it has been possible to observe the appearance of
different situations like coherent chaotic and periodic states,
and states in which smaller clusters occur. However, it is
difficult to know whether the appearance of collective behav-
ior will be a feature of larger networks of chaotic oscillators
connected through this kind of local, although not weak, cou-
pling, and what will happen in the thermodynamic limit.
Kaneko [13] has performed a number of very interesting
studies in the case of globally coupled maps, in which the
local units are quadratic or circle maps in the chaotic state,
that can be taken as mean-field-type representations of
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FIG. 2. Synchronized behavior obtained by connecting two
identical van der Pol-Duffing circuits (1) in the chaotic regime
through connection (3). See Fig. 1 for the parameters.
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TABLE 1. Lyapunov exponents for the van der Pol-Duffing
system (1) (first line), and transverse Lyapunov exponents for vari-
ous connections of two Van der Pol-Duffing systems (the corre-
sponding equation numbers are given).

Connection Lyapunov exponents
(1) (1.29,0.00, —49.41)
x(t) (2) (—0.50,—0.50, — 52.09)
vy () (3) (—0.50,—0.50, — 52.09)
—2(x(1)>— ax(1)) (4) (0.00, —0.50,—0.50)
-G (4.47,0.00, — 52.60)
vax(r) (6) (0.24,0.22,— 83.58)

coupled map lattices, which are useful models for spatiotem-
poral phenomena [14]. In these studies he has observed in-
teresting phenomena, like the appearance of coherent, or-
dered, partially ordered, and turbulent phases, and also the
violation of the law of large numbers [15] in the turbulent
phase, this stemming from the presence of some kind of
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FIG. 3. Cascade of four van der Pol-Duffing systems (1) where

every two contiguous systems are connected through (2), the net-

work being defined by Eq. (7). See Fig. 1 for the parameters.
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FIG. 4. Four van der Pol-Duffing systems (1) connected in
competition according to Eq. (8), such that the first oscillator drives
the second and third systems through connection (1), while in turn
the fourth oscillator also drives the second and third ones through
connection (5). See Fig. 1 for the parameters.

unexpected order. The situation in which several phases may
coexist seems particularly promising for the storage of infor-
mation and modeling of some biological phenomena, like
cell division and differentiation [16]. Another interesting
topic that has aroused some interest in the last years is the
appearance of collective behavior in high-dimensional dis-
crete systems with synchronous updating, like cellular au-
tomata [ 17] with a totalistic rule of the game of life type [18]
and also in coupled map lattices [19] with the same type of
coupling. The explanation of this behavior is still under de-
bate [20], and thus theoretical explanations are called for.

The structure of the present paper is as follows. In Sec. II
the model chosen to represent the chaotic units is discussed,
together with the method used to connect these systems.
Then, Sec. III contains the main results of the present con-
tribution, both for networks composed of identical units and
for networks for which some units are described by different
parameters. Finally, Sec. IV gathers the main conclusions of
the present work.
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FIG. 5. Four van der Pol-Duffing oscillators (1) connected in a
closed loop according to Eq. (9), such that connections (2) and (3)
alternate. See Fig. 1 for the parameters.

II. MODEL AND METHOD

In the present work we shall consider the Van der Pol-
Duffing (VPD) oscillator, already used for synchronization
purposes in Ref. [12],

X =—v(xj—ax;—y), Yi=x1—y1—21, 21=08Y;.

1

This circuit can be easily implemented in the form of an
analog circuit [21] that bears a close resemblance to Chua’s
circuit [5], the main difference being that the piecewise lin-
ear element of the latter is replaced by a cubic nonlinearity
that is quite easily implemented in practice by using a set of
diodes and an operational amplifier.

Considering B as the bifurcation parameter the double-
minimum shape of the Duffing system makes the system
have two alternative minima for 8>~ 1050 that exhibit in-
dependently a period-doubling route to chaos when one goes
to lower values of B. The two strange attractors born in this
process are not connected, although they merge in an
attractor-merging crisis [22] for smaller values of B. For
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even smaller values of 8 (B8~650) a periodic window is
created in a saddle-node bifurcation. This periodic orbit ex-
tends to both minima and is stable down to 8~500, where
another period-doubling cascade starts, ending abruptly in an
interior crisis [22] when the stable and unstable orbits cre-
ated in the saddle-node bifurcation collide. After this set of
processes the system becomes once again chaotic, and, thus,
we have chosen to work at 8=450. There is another feature
of this system that is important in other behaviors to be
found in other sections. It is the fact that the system exhibits
a competing attractor, namely a stable limit cycle. Depending
on the initial condition the system will be described by either
attractor, while it can be assured that that initial conditions
close to the origin belong to the attraction basin of the
strange attractor, as the limit cycle surrounds the strange at-
tractor.

The low-dimensional units have been connected using a
recently introduced modification [11] of the Pecora-Carroll
method [2]. The main idea of this modified method is to
introduce the driving signal at a given place of the evolution
equations of the response, the main difference with the PC
method being that in the latter the driving signal is intro-
duced at all possible places, suppressing completely the dy-
namical evolution of the variable that is homologous to the
driving signal in the response dynamical system. The result
is that the driving signal is regenerated by the response cir-
cuit.

]

In particular, two stable connections have been found in
the case of the Van der Pol-Duffing system (1). In the first
one of them, and considering (1) as the evolution equation
for the drive, the response is written as

x2=—v(x§—ax2—y2), Yo=x1(t)=y2—22, 22=PBY2,

2

while an example in which synchronization behavior appears
is shown in Fig. 1. Notice that the place where the driving
signal enters has been emphasized by underlining it, while
the dependence on ¢ stresses its role as an external forcing
parameter. The second stable connection from the viewpoint
of synchronization can be written in the form

. 3 C— s
Xo=—v[xy—ax,—y ()], Y2=x,—y2— 22, 22=PBy2,

3)

while an example is shown in Fig. 2. On the other hand, the
following connection has been found to be marginally stable:

Xo= =[x (1)} —ax (1) =y,], Y,=X2—Y2—22.22= By,

“4)

which can be easily checked out as the response becomes a
forced linear system. The following connections are not syn-
chronizing, but they are being reported because they lead to
some interesting behavior to be analyzed later:

)é2=—v(x%—ax2—y2), Y2=x2—y,—21(t), 22=PY2, (5)

%= —v[x3—ax ()= y,]. Y2=Xy—Yya—22, Z,=BYa, (6)

The transverse Lyapunov spectra corresponding to all these connections, together with the Lyapunov exponents for the original
chaotic system (1), are reported in Table 1.

III. RESULTS
A. Networks with homogeneous driving
The results presented in this work correspond to small arrays with four VPD circuits that are in the chaotic regime, starting
with the case of four identical units connected in cascade, as described by the following set of equations,
X =—v(xy—ax;—yy), V=X —7Y1721, 2176y, o= —v(xy—axy—y,), Ya=xi(8)—y2—22, 2= BY2s
. 3 LR . . 3 CR— L
X3=—v(xz—ax3—y;3), y3=x2()—y3—z3, 3= By3, X4= —wv(xz—axg—ye), Ya=x3() = ya—z4, 4= Bys, (1)

the results being presented in graphical form in Fig. 3. One could think that the behavior so far obtained should be trivially
related to that presented in Fig. 1, but it can be seen that the second and third systems synchronize in the first place, while,
later, the first and fourth oscillators become synchronized after a short transient during which these systems exhibit some kind
of anti-phase-synchronous behavior.

The following setting to be considered consists in the competition of connections (2) and (5) in a network with four VPD
oscillators:

xlz_V(x?—a’xl—h), Y1i=xX1—=y1— 21, 21=BY1» x2=—v(x§—ax2—y2), Yo=x1 (1) —y2—24(1), 22=BYy,,

)é3=—~v(x§—ax3—y3), y3=x1(1)=y3=24(1), Z3=Bys,  X4=—v(xj—axs—ys), Y4=X4—Ys—24. 24a=Bys. (8)

while the result can be found in Fig. 4. The result implies that the system achieves an asymptotically stable behavior, which
does not depend on the initial condition that is chosen.
In this kind of competitive connection in which one oscillator is simultaneously driven by several different signals the
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observed behavior is some kind of compromise between the inputs that cannot be predicted a priori, but it appears that each
connection has a sort of strength, and, hence, some of them may have the ability to dominate the others. Thus, in this case it
is clear that connection (2) is able to overcome the instability associated with connection (5). Notice that by using the original
PC method it would not be possible to establish this kind of connection for a three-dimensional circuit, because by injecting
two signals one would have a one-dimensional, and hence trivial, circuit.

In the next connection to be considered four VPD oscillators are connected in a loop with two different (alternating)
connections, the system being described by the following equations:

xlz—v[x?—ax—y4(t)], VI=Xi—Y1—21, 21=BY1, x2=~v(x%*ax2—y2), Yo=x1(t)=y2—22, Z2=PBY2,

d3=—v[xs—ax;—y,(0)], Y3=x3—y3—23, 23=By3 X4=—v(xi—axs—ys), Ya=x3()—ys—24, 24=PBys, (9)

while a numerical simulation is presented in Fig. 5. The two connections used in this case are both stable (see Table I).

It can be seen that in a first moment the VPD oscillators synchronize in pairs; namely, the second and third oscillators do
synchronize in this example, while the same can be said about the first and fourth systems. Then, later, the four oscillators
become completely coherent. The signals that drive each system imply a relatively strong perturbation in its behavior, and,
thus, the system needs some time before converging towards the stable synchronized behavior among the four oscillators.
However, the transient behavior in which one has that two pairs of oscillators synchronize separately in the first place appears
to be typical, in the sense that one always finds it when starting with random initial conditions for the four oscillators, although,
of course, the symmetry of the problem implies that it is not possible to know which will be the precise oscillators that exhibit
transient synchronization one with another. In some simulations the transient appears to have a very long lifetime, but,
apparently, for any set of initial conditions that lie in the attraction basin of the strange attractor before coupling, one always
reaches the coherent cluster of four oscillators.

In the last setting that has been considered, four VPD oscillators are linked also in a loop and with two alternating
connections, the array being described by the following equations:

xl:wv[x?—a)%(t)_)’l]’ ViTXi—=y1—21, 21= By, )é2=~v[xg*ax2~yl(t)], V2=X2=Y2" 22, 227 BY2s

K= —v[x3—axy (1) —ys3l, Yi=x3—y3—z3, £3=Bys, X4=—v[xi—ax,—y3(1)], Ya=x4—y4—24. 24=Bys. (10)

The final, perhaps surprising, result is that the system attains
a self-organized coherent periodic state (see Fig. 6). Thus, in
this case one has spontaneous emergence of ordered behavior
in a network of chaotic oscillators that are locally coupled.
However, here the mechanism of the process is not the same
as in the case of globally coupled maps, as reported by
Kaneko [13], and the explanation is as follows. Connection
(6) is nonsynchronizing (it even has two unstable directions,
as shown in Table I). However, the behavior along the un-
stable directions is not necessarily unbounded in this case, as
it makes the system fall outside the attraction basin of the
strange attractor and perform a transition to a stable limit
cycle that coexists with the strange attractor. Thus, in this
case the mechanism of the phenomenon is not purely dy-
namical as in the examples reported in Refs. [13,17,19].

B. Networks with inhomogeneous driving

In the second part of this work we have considered net-
works in which one of the oscillators has different values of
parameters. In particular, these oscillators will be in a peri-
odic window or on the road to chaos, but the initial condi-
tions will not be such that the system goes to the competing
limit cycle. This study can be interesting from the purely
theoretical side, and, in addition, this can be considered a
first step in analyzing the behavior of the network in the case
where some external input acts on some oscillator changing
its state.

The first connection that has been considered corresponds
to a cascade of four elements formed with connection (2),
that is, the same connection described by Eq. (7) in Sec.
IIT A. The first oscillator has been chosen such that it is in a
periodic orbit that spans both scrolls and that is in the peri-
odic window described in Sec. II namely, it has 8=1500).
The result (see Fig. 7) is that this setting induces a transition
from the strange attractor to the coexisting stable limit cycle
in the three cascaded oscillators. The same behavior can be
simply obtained by adding some form of external noise that
will assist in the transition between the two attractors, indi-
cating that, with respect to the chaotic signal produced by an
identical system (see Fig. 3), the signal corresponding to
another parameter value is equivalent to a noisy signal.

Now, we shall consider the case of the connection re-
ported in Eq. (8), in which two oscillators are driven simul-
taneously by two signals that enter through different connec-
tions. Here we shall consider the case in which the two
driven oscillators are still chaotic, while the driving signals
correspond to systems that are different, although they share
the feature of being in the periodic regime (see Fig. 8). The
result is analogous to the one reported in Fig. 4 in the sense
that the behavior of the driven systems is a compromise be-
tween their own dynamics and the periodic driving signals,
although the behavior appears to be now periodic, albeit
complex.

In turn, we shall now consider the already mentioned situ-
ation of the setting (9), in which two different alternate con-
nections coexist. As was already mentioned in Sec. IIT A, the
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FIG. 6. Four van der Pol-Duffing oscillators (1) connected in a
closed loop according to Eq. (10), such that connections (3) and (6)
alternate. See Fig. 1 for the parameters.

behavior of the network in the case where one of the systems
is different differs from the one reported in Fig. 5 (the four
oscillators did synchronize) in the fact that now symmetry
has been broken, and the globally synchronized cluster splits
into two clusters with two oscillators each (see Fig. 9). This
behavior was observed as a transient in the case in which the
four oscillators are identical, but now becomes the most
stable behavior. However, the globally synchronized behav-
ior appears as a transient behavior in many runs (as seen in
Fig. 9), although ultimately the system sets up in the two-
cluster behavior. Sometimes the long-time limit does not set
up easily, as the transient with coherent chaotic behavior
extends till very long times. It has been checked that this is
indeed the globally attracting state, both by running some
very long simulations and by adding some small amount of
external white noise to the system, such that the intrinsic
bimodality of this situation can be more easily resolved. In
the case of identical oscillators the addition of this noise
yields a globally synchronized state, thus introducing no bias
towards the symmetry-broken solution.

Finally, we shall consider again the setting of (10), that is,
the connection in which one has two alternating connections,
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FIG. 7. Cascade of four van der Pol-Duffing systems (1) [see
Eq. (7) for the setting], such that the first oscillator is periodic
(v=100, «=0.35, and B=500), while the other oscillators have
the same parameter values given in Fig. 1. Compare with the results
obtained in Fig. 3 in the case of homogeneous driving.

one of them being unstable from the point of view of syn-
chronization. In Fig. 6 it was shown that the presence of
connection (6) makes the system perform a transition to a
globally synchronized regular state, this state being formed
by four synchronized limit cycles. In the behavior shown in
Fig. 10 the first oscillator has 8= 1000, and one has that the
four systems are in the periodic state, but now with different
frequencies and/or phases in their oscillations, i.e., they are
not synchronized. The system does not perform a sudden
transition between the completely synchronized state of Fig.
6 and the behavior of Fig. 10. Instead, if one stays closer to
the homogeneous case, namely by using 8=500, one has
four periodic oscillators that have the same frequency but are
split into two clusters of two, the oscillators being synchro-
nized within each cluster, causing the two clusters to differ
by a phase. As one has limit cycles that have approximately
the same amplitude, it is not surprising to find that the be-
havior resembles the one found for the so-called phase model
[23] that is widely used in the modeling of neural networks,
heart tissue, chemical reactions, etc.
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FIG. 8. Four van der Pol-Duffing systems (1) connected in com-
petition according to Eq. (8), as the results reported in Fig. 4, but
now the first oscillator has »= 100, a=0.35, and 8= 500, while the
last has =100, «=0.35, and S=305. See Fig. 1 for the param-
eters of the other two oscillators.

IV. CONCLUSIONS

The aim of the present contribution has been to exploit
some of the inherent potentialities of a recently suggested
method [11] that allows one to obtain synchronized behavior
in chaotic systems through one-way connections. The
method can be very useful in the case of low-dimensional
systems because it allows one to devise networks composed
of many chaotic units, so that many possible interconnec-
tions are allowed. Results are presented in the present work
for the case of a Van der Pol-Duffing circuit [12] that is
suitable for its implementation in an analog circuit.

A few different connections have been considered for the
case of four oscillators, starting with a cascade, in which a
set of oscillators is connected in a linear geometry (with no
connection between the two ends) by using a single connec-
tion. Then, the situation in which two oscillators receive in-
put simultaneously from two other systems is considered. A
different connection consists of four oscillators connected in
a closed loop with alternating stable connections (from the
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FIG. 9. Four van der Pol-Duffing oscillators (1) connected in a
closed loop according to Eq. (9) (see Fig. 5 for more details), such
that the first oscillator has v= 100, =0.35, and 8=1000. See Fig.
1 for the parameters of the other three oscillators.

point of view of synchronization), the result also being syn-
chronized behavior. The last connection considered is also a
closed loop with two alternating connections, but one of
them now being unstable from the point of view of synchro-
nization. The behavior observed is a periodic collective state,
the mechanism being the transition to a competing stable
limit cycle induced by the unstable connection.

The consideration of inhomogeneous driving, i.e., the fact
that some of the oscillators are different from the others,
yields some qualitatively different behaviors, the transition to
the coexisting limit cycle in the case of the linear cascade,
where the dissimilarity in the signals can be considered as
some external noise, or the symmetry breaking in two clus-
ters in the case of the alternating closed loop with stable
connections. In the case of the latter geometry, but with the
consideration of one unstable connection, one has a transi-
tion to two clusters that differ by a phase, or a set of different
periodic behaviors, depending on the parameter differences.

In addition to the interest that the kinds of systems studied
in this work may generate on their own, coupled chaotic
systems are already interesting from the viewpoint of dy
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FIG. 10. Four van der Pol-Duffing oscillators (1) connected in
a closed loop according to Eq. (10) (see Fig. 10 for more details),
such that the first oscillator has v= 100, &= 0.35, and 8= 1000. See
Fig. 1 for the parameters of the other three oscillators.

namical systems theory. These systems may offer many new
and rich dynamical behaviors, compared to those already
found in dimensions three or four. For instance, by consid-
ering systems of dimensions five or six that possess some
elements of symmetry, it has been shown [24] that new be-
haviors can be found, such as riddled basins [25], with an
extreme dependence on the initial conditions, or on-off inter-
mittency [26], with short excursions out of a stable state.
Symmetry is an important ingredient in the case of these new
behaviors, and, thus, it would not be surprising to find some
new behaviors in the case of four three-dimensional systems;
as has been shown in the present work, some connections
might support both states with one set of four and two sets of
two synchronized oscillators.

On the other hand, Kaneko [13] has recently introduced
the idea that switching among different coexisting clusters
can be a form of encoding information in a chaotic network.
In his work he has considered simple quadratic maps con-
nected through global coupling, while the choice of the ad-
equate state of the system is achieved by changing the cou-
pling among the maps. In the framework of the connection
method considered in the present work, there are no param-
eters regulating this interaction, the connectivity being re-
lated, instead, to which units are connected and through
which connection. This could be a more realistic representa-
tion of the way in which real neurons interact, especially if
one uses continuous or discrete neuron models to represent
the local units [27].
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